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Abstract

Process mining studies ways to improve real-world processes using his-
torical event data generated by IT systems that support business processes
of organisations. Given an event log of an IT system, process discovery al-
gorithms construct a process model representing the processes recorded in
the log, while conformance checking techniques quantify how well the dis-
covered model achieves this objective. State-of-the-art discovery and con-
formance techniques either completely ignore or consider but hide from the
users information about the likelihood of process behaviour. That is, the
vast majority of the existing process discovery algorithms construct non-
stochastic aware process models. Consequently, few conformance checking
techniques can assess how well such discovered models describe the relat-
ive likelihoods of traces recorded in the log or how well they represent the
likelihood of future traces generated by the same system. Note that this
is necessary to support process simulation, prediction and recommenda-
tion. Furthermore, stochastic information can provide business analysts
with further actionable insights on frequent and rare conformance issues.
This article presents precision and recall measures based on the notion
of entropy of stochastic automata, which are capable of quantifying and,
hence, differentiating, between frequent and rare deviations of an event
log and a process model that is enriched with the information on the
relative likelihoods of traces it describes. An evaluation over several real-
world datasets that uses our open-source implementation of the measures
demonstrates the feasibility of using our precision and recall measures in
industrial settings. Finally, we propose a range of intuitive desired prop-
erties that stochastic precision and recall measures should possess, and
study our and other existing stochastic-aware conformance measures with
respect to these properties.

Keywords: Process mining, stochastic-aware conformance checking, pre-
cision, recall, fitness, information theory, entropy
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1 Introduction

A business process is a plan and coordination of activities and resources of an
organisation that aims to achieve a business objective. Business process man-
agement (BPM) is an interdisciplinary field. It studies concepts and methods
that support and improve the way business processes are designed, performed,
and analyzed in organisations with the ultimate goal of reducing their costs,
execution times, and failure rates through incremental changes and radical in-
novations [45, 10]. Research in BPM has resulted in a range of methods, tools,
and techniques for identifying, designing, enacting, monitoring, and innovating
operational business processes [39, 34].

Process mining studies ways to discover, monitor, and improve real-world
processes using the knowledge accumulated in event logs produced by informa-
tion systems of organisations [40]. An event log, or log, is a collection of recorded
traces, where each trace is a sequence of timestamped events observed during
the execution of some business process case. As different cases of a business
process can follow the same sequence of steps, the corresponding event log may
contain multiple traces that follow the same sequence of events.

Event logs are inherently stochastic. By accumulating information about
business process executions over extended periods, the relative frequency of
observing a trace in a log aims to encode the true likelihood of executing the
corresponding sequence of steps through the process. This knowledge about
the frequencies of real-world processes is invaluable for business analysis and
redesign initiatives [11], as it can inform flexible performance management [13]
and generation of novel business models and processes, both incremental [46]
and radical [9, 36].

For instance, consider the following two event logs, each containing of two
distinct traces, with 1,000 traces in total:

L1 = [⟨x-ray, treat⟩999,

⟨MRI, treat⟩1]
vs

L2 = [⟨x-ray, treat⟩1,
⟨MRI, treat⟩999].

Even though these event logs have the same distinct traces, they stem from two
fundamentally different real-world processes. In event log L1, the ⟨MRI, treat⟩
trace is the exception, while in event log L2, it is the rule. Similarly, the
⟨x-ray, treat⟩ trace is the rule in log L1 and the exception in log L2. Non-
stochastic aware techniques would consider these logs as being equal, and are
thus potentially oblivous for their large differences. Considering the stochastic
perspective makes it possible to consider these differences.

Some examples of advanced uses of process mining are prediction, recom-
mendation, and simulation. Prediction techniques study ways to estimate prop-
erties of the future steps of a running trace; for example, the risk of the trace
being delayed or the overall cost of the trace. Based on such predictions, re-
commendation techniques automatically suggest mitigation or optimisation of
the future steps of the trace to meet the envisioned objectives. Prediction and
recommendation techniques can benefit from stochastic-aware process models,
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i.e., process models supplied with the information about the relative likelihoods
of decisions that impact the routing of the execution of the model. Indeed, given
the current state of the trace in the process model, one can use the stochastic
perspective of the model to estimate the likelihoods of the various evolution
scenarios of the trace and quantify the consequences. Simulation can be used
to measure the impact of process changes before they get implemented, for ex-
ample, in process redesign projects. It is common in such projects to construct
several candidate models with proposed changes and then simulate them to
measure key performance indicators, for instance, throughput or cycle time, to
identify the candidate model with the desired performance characteristics. The
outcomes of the simulations depend on the stochastic perspective of the model
and, hence, do the measured key performance indicators based on which the
decision are made.

Even though simulation, prediction, and recommendation can benefit from
stochastic-aware process models, or stochastic process models, few techniques
have been proposed to construct such models automatically from event data [33].
We refer to such techniques as stochastic process discovery techniques. Typic-
ally, the stochastic perspective is constructed by hand as an extension of an
existing process model [29].

To treat the stochastic perspective of process models as a first-class citizen,
it should be possible to evaluate it. The stochastic perspectives of models, as
constructed manually or by stochastic process discovery techniques, may differ
substantially from the stochastic perspective of the event log they are con-
structed from. Hence, stochastic process models risk not being faithful repres-
entations of the actual real-life business processes. Consequently, predictions,
recommendations, and simulations that rely on such low-quality models may
return misleading results [41].

In classical (non-stochastic) conformance checking, typically four dimensions
are considered to compare a log to a (non-stochastic) process model [4]: (1) re-
call, also known as fitness, quantifies the part of the behaviour of the event log
that is supported by the model; (2) precision quantifies the part of the model’s
behaviour that is also in the event log; (3) generalisation measures the likeli-
hood that the future behaviour of the system that induced the log is captured
in the model, and (4) simplicity measures whether the model is clear and con-
cise. However, the vast majority of existing conformance measures do not take
the stochastic perspective of process models into account. Few techniques have
been proposed that can be used to verify or assess the quality of stochastic
process models with respect to event logs, that is, to perform stochastic con-
formance checking. In [18], the authors proposed a technique for stochastic
conformance checking grounded in the notion of the earth movers’ distance.
This technique, however, has limitations when it comes to assessing the quality
of stochastic process models with loops. The entropic relevance measure em-
ploys a minimum description length compression-based framework to quantify
the quality of stochastic process models with respect to the log they were con-
structed from [28, 2]. The relation of these stochastic conformance measures to
the four quality criteria in process mining is a subject of ongoing research. For
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instance, entropic relevance represents a blend between the traditional precision
and recall quality criteria in conformance checking; it penalizes log traces the
model does not describe and traces permitted by the model but not recorded in
the log [2].

In this article, we lift two classical quality criteria, namely recall and preci-
sion, to consider the stochastic perspectives of event logs and process models.
The measures treat both log and model as stochastic automata and compare the
entropy [8] of these automata with the entropy of a third automaton that rep-
resents the conjunctive stochastic behaviour of the log and the model. While
the measures support any stochastic process model whose behaviour can be
represented in a finite stochastic deterministic automaton, we illustrate and
implemented the measures for Stochastic Petri nets (refer to Section 2).

In summary, this paper investigates how stochastic models and event logs can
be compared, by making the following contributions: two new entropy-based sets
of stochastic conformance checking measures (in particular supporting loops); a
detailed discussion on desirable properties for stochastic conformance checking
measures; an implementation of our new measures; and a three-fold evaluation
of differences between measures, feasibility and practical usefulness.

In [29], we reported on a project with a major German health insurance
company that aimed to analyze and simplify about 4,000 of their hand-crafted
stochastic process models captured using the EPC notation annotated with
probabilities of taking various decisions. The insurer relied on these stochastic
models to estimate the number of employees to hire to enact all the operational
processes in the upcoming calendar year. Given logs of executed processes at
the end of the year, the measures proposed in this article can be used to assess
the correctness of the initial estimates. In Section 5, we further illustrate the
applicability of our measures in this scenario.

This article extends [16] with (1) new stochastic-aware recall and precision
measures that are also grounded in the entropy of stochastic languages of log
and model but, differently, quantify the potential gain due to the use of both log
and model when describing the traces they share; (2) new and revised proper-
ties for stochastic conformance checking measures, (3) an analysis of the existing
stochastic-aware conformance measures with respect to the properties they sat-
isfy, (4) a publicly available implementation of the new conformance measures,
and (5) an extended evaluation of the applicability and feasibility of using the
measures in industrial settings.

The remainder of the paper is structured as follows: The next section in-
troduces formal notions that are used to support the subsequent discussions.
Section 3 presents our stochastic-aware precision and recall measures. Section 4
introduces properties for stochastic-aware conformance measures and evaluates
the existing and presented in this article measures against these properties. Sub-
sequently, our measures are evaluated in Section 5, and related work is discussed
in Section 6. Finally, Section 7 concludes the paper.
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2 Stochastic Languages, Petri nets, Automata
& Conformance

This section introduces notions used in the discussions in the subsequent sec-
tions.

Stochastic Languages Let Σ be an alphabet of activities, then Σ∗ is the set
of all possible sequences of activities (traces) over Σ. Let ε denote the empty
trace. A language ⊆ Σ∗ is a, possibly infinite, set of traces.

Definition 1 (Stochastic language). A stochastic language L is a function
L∶Σ∗ → [0,1], denoting a probability for each trace, such that ∑t∈Σ∗ L(t) = 1.

An event log is a multiset of traces. For instance, the event log Le = [ε, ⟨a⟩2,
⟨a, a⟩4, ⟨a, a, a⟩, ⟨a, a, a, a⟩2] consists of 10 traces. Its corresponding stochastic
language is [ε0.1, ⟨a⟩0.2, ⟨a, a⟩0.4, ⟨a, a, a⟩0.1, ⟨a, a, a, a⟩0.2] and its corresponding
language is {ε, ⟨a⟩, ⟨a, a⟩, ⟨a, a, a⟩, ⟨a, a, a, a⟩}.

Stochastic Deterministic Finite Automata

Definition 2 (Stochastic deterministic finite automaton, adapted from [7]).
A stochastic deterministic finite automaton (SDFA) is a tuple (S,Σ, δ, p, s0),
where S is a set of states, Σ is an alphabet of activities, δ ∶ S × Σ → S is a
transition function, p ∶ S ×Σ→ [0,1] is a probability function, and s0 ∈ S is the
initial state.

Intuitively, an SDFA starts in state s0. In a state s, p(s, a) denotes the probab-
ility that an activity a is executed. If a is executed in s, then δ(s, a) denotes the
resulting state. We denote termination with λ, such that λ ∉ Σ. The probability
to terminate in a particular state s is denoted by p(s, λ), which is defined as
1 −∑a∈Σ p(s, a). Consequently, for each state, the probabilities of leaving the
state or terminating at it should sum to 1, i.e. ∀s ∈ S ∶ p(s, λ)+∑a∈Σ p(s, a) = 1.

A trace in an SDFA is a sequence of transitions ⟨a1 . . . an⟩, of which the prob-
ability can be found by combining the trace with a sequence of states s0 . . . sn
such that ∀1≤i≤nδ(si−1, ai) = si; the probability is then ∏1≤i≤n p(si−1, ai) ∗
p(sn, λ). If this probability is 0, the SDFA does not support the trace. Fi-
nally, the stochastic language of an SDFA is the set of all supported traces by
the SDFA, with their probabilities.

The stochastic languages that can be represented by SDFAs are called stochastic
deterministic regular languages [7]. For instance, all event logs can be repres-
ented by SDFAs (we included a translation in Appendix A.1). Figure 1a shows
the SDFA of our example event log Le. Notice that SDFAs do not inherit all
the properties of deterministic finite automata. For instance, SDFAs are not
closed under union, that is, the union of two stochastic languages represented
by SDFAs is not necessarily expressible by an SDFA [44]. Therefore, we did not
attempt to find valid reduction strategies for SDFAs, but leave this as future
work.
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(a) SDFA of log Le = ⌊ε, ⟨a⟩2, ⟨a, a⟩4, ⟨a, a, a⟩, ⟨a, a, a, a⟩2⌋.

a
8 5

a
5

2

(b) An SPN Se.

0.2 0.5
a 0.8

a 0.5

(c) SDFA of Se.

Figure 1: Examples of an event log and a Stochastic Petri net, and their corres-
ponding stochastic deterministic finite automata. For convenience, the numbers
in the states denote the probability of termination.

(Stochastic) Petri nets

Definition 3 (Petri net). A Petri net (PN) is a tuple (P,T,A,M0, l) in which
P is a set of places, T is a set of transitions (T ∩P = ∅), A ⊆ (P ×T )∪ (T ×P )
is an arc relation, M0 (multiset over P ) is the initial marking and l∶T → Σ is a
partial labelling function.

A marking is a multiset over P , capturing the state of the net by indicating
tokens on the places in P . A transition t ∈ T is enabled in a marking M if for
each place p′ such that (p′, t) ∈ A it holds that p′ ∈M . If t fires, then all these
places p′ are removed from M , and to each p′′ such that (t, p′′) ∈ A a token is
added to the new marking, and if l(t) exists, it indicates this activity l(t) being
executed. A path in a Petri net is an alternating sequence of markings and
transitions such that the markings can be traversed by firing the immediately
preceding transitions, and such that in the last marking no transition is enabled.
The trace corresponding to a path is the sequence of transitions projected to
activities using l, excluding transitions that are not mapped by l. The language
of the net is the set of all possible traces for which there exist corresponding
paths in the net.

A stochastic Petri net (SPN) is a Petri net that expresses a stochastic lan-
guage. Several ways to enrich a Petri net with stochastic information have been
proposed (refer to [23] for an overview). The techniques presented in this paper
apply to any type of SPN that can be translated to an SDFA. Nevertheless,
for illustrative purposes, we consider a type of SPN in which transitions are
annotated with weights:

Definition 4 (Stochastic Petri net). A Stochastic Petri net (SPN) is a tuple
(P,T,A, M0, l,w) such that (P,T,A,M0, l) is a Petri net and w∶T → R+ is a
function that assigns weights to transitions.
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Given a marking M , the probability that an enabled transition t fires in M ,
denoted by p(M, t), is proportional to t’s weight compared to the weight of all
enabled transitions: p(M, t) = w(t)/∑t′ enabled in M w(t′). Then, the probability
of a path consisting of transitions t1 . . . tn and markings M0 . . .Mn in an SPN is
the product of the transitions’ probabilities: Π1≤i≤np(Mi, ti). The probability
of a trace in an SPN is the sum of the probablities over all paths that induce the
trace, and the stochastic language of an SPN is the collection of all the traces
induced by all the paths in the SPN (and all other traces having probability 0).
Figure 1b shows an example of an SPN Se.

We discuss translating SPNs to SDFAs in A.2. For instance, Figure 1c shows
the SDFA of SPN Se in Figure 1b.

A necessary condition for an SPN to be translatable to an SDFA is that the
SPN must have a finite state space, or in other words, the underlying Petri net
must be bounded. Notice that this does not exclude loops.

Furthermore, the stochastic perspective of the SPN must be deterministic. A
sufficient (but not necessary) condition for this is that for any reachable marking
of the SPN, if there exist two non-equal fireable chains of unlabelled transitions
such that at the end of each chain a transition with the same label is enabled,
then the marking that results from firing these two chains of transitions is equal.
That is, if it is possible that the same label is reachable using more than one
path of transitions, then the marking resulting from these paths must be equal.

Stochastic conformance checking techniques Next, we discuss two exist-
ing stochastic conformance checking techniques.

The Earth Movers’ Stochastic Conformance [19] (EMSC) is a single measure
describing the difference between two stochastic languages. Intuitively, one can
consider a stochastic language as a distribution of earth: a pile of earth of a
particular shape, with a total amount of earth of 1. Then, EMSC is the effort
to transform one pile into the other, that is, the distance that earth needs to
be moved times the amount of earth that needs to be moved. While concep-
tually well-defined for any stochastic language (EMSC supports both log-log,
log-model and model-model comparisons), implementations only consider finite
stochastic languages. Thus, the stochastic language for models with loops or
other infinite behaviour needs to be unfolded and thus be truncated. As distance
between two traces, current implementations use the normalised Levenshtein
distance. [19]

The entropic relevance measure for stochastic conformance checking is groun-
ded in a minimum description length compression-based framework [28, 2].
Given a collection of candidate stochastic process models, it can be used to
select a model from the collection that represents the given event log, including
its stochastic perspective, better. Entropic relevance is computed as the average
number of bits required to compress a trace from the log using the structure and
information about the relative likelihoods of traces captured in the model. The
more traces from the log the model describes and the closer the model reflects
the relative likelihoods of traces induced by the log, the better the model can
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compress the traces. An entropic relevance value is a non-negative number with
meaningful units (bits per trace) taken from the open-ended numeric range,
with small values being preferable over large values, as smaller values reflect the
ability of the model to compress traces better. Given that the probability of a
trace in the stochastic language of the model can be computed in the time that
is linear in the size of the trace, the computation time of entropic relevance is
linear in the size of the event log (number of traces in the log times average
length of a trace in the log) [28].

3 Stochastic-Aware Conformance Checking

This section presents our stochastic-aware conformance checking measures. In
classical, that is, non-stochastic, conformance checking, precision and recall are
often measured as a share of the shared information about traces in the com-
pared log and model in the information about traces described in either the
model or log [30]. In stochastic conformance checking, this intuition can be
implemented in various ways, and we propose two variants of stochastic-aware
precision and recall measures that implement this intuition. The first vari-
ant uses SDFA projections to prioritise the stochastic information of either the
model or log, while the second variant of the measures – called gain – uses the
stochastic information from both the model and log equally when computing the
measurements. That is, the first variant of the measures relies on a projection
of SDFAs that encode process model and event log to obtain the behaviour that
is common to both. Then, precision and recall are obtained by considering the
entropy of the SDFAs and their projections. The second variant of the measures
quantifies the potential gain from describing the common behaviour using both
model and event log compared to a description that relies either on the model
or the log.

Our measures can be applied to models captured using any process modeling
formalism as long as they describe stochastic languages that can be represen-
ted by SDFAs. Next, in this section, we introduce the projection operation of
SDFAs. Then, we describe a procedure we use to compute the entropy of a
stochastic language. Subsequently, we present our stochastic measures of preci-
sion and recall between designed and observed processes. We then discuss the
practical considerations of our implementation of the measures.

3.1 Projection

A projection of two SDFAs L and M , denoted by P(L,M), is an SDFA contain-
ing the behaviour present in both L and M . For non-stochastic deterministic
finite automata, there are well-known algorithms to establish a projection [20].1

1For non-stochastic DFAs, a projection is often called a conjunction. We do not use
this term here to avoid confusion with the “stochastic” conjunction of two SDFAs, as this
“stochastic” conjunction may not necessarily yield an SDFA again.
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These algorithms typically construct synchronous walks in both automata, tak-
ing a step only when it is allowed in both L and M . We use a similar strategy:
whenever both automata can take a step, this step is added to the projection.
The probability of such a step is taken as the probability of the corresponding
step in automaton L.

0.1 2/9 4/7 1/3 1
a 0.9 a 7/9 a 3/7 a 2/3

(a) Projection P(Le, Se) using the probabilities of the log.

0.2 0.5 0.5 0.5 1
a 0.8 a 0.5 a 0.5 a 0.5

(b) Projection P(Se, Le) using the probabilities of the model.

Figure 2: Projections of the SDFAs shown in Figure 1.

For instance, consider the two SDFAs shown in Figures 1a and 1c. Their
projections are shown in Figures 2a and 2b. Notice that if an outgoing edge
is removed from a particular state, then the probability of the corresponding
transition is added to the termination probability at that state.

3.2 Entropy

The entropy H of a stochastic language L is defined as follows:

H(L) = − ∑
t∈Σ∗

L(t) log2L(t) (1)

By convention, we accept that 0 log 0 = 0. The entropy of L is a measure of the
average uncertainty in the stochastic language, which can be seen as a random
variable whose value is a trace randomly selected from the language according to
the probabilities assigned to the traces. It is the number of bits that is on average
required to describe a trace from the language [8]. Hence, a language with only
a few very likely traces has low entropy, while a high entropy characterises a
language with many distinct traces that have low chances of occurring.

As Σ∗ is infinite, H cannot be computed by iterating over Σ∗. Therefore, we
compute the entropy using a procedure adapted from [7]. Given an SDFA A =
(S,Σ, δ, p, s0) that describes a stochastic language, the entropy of the stochastic
language of A is:

H(A) = − ∑
δ(s,a)

csp(s, a) log2 p(s, a) −∑
s∈S

csp(s, λ) log2 p(s, λ) (2)

where each state s ∈ S uses a constant cs, which can be obtained iteratively [7]:
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c0s = 0, (3)

ct+1
s =

⎛
⎝ ∑
δ(s′,a)=s

cts′ ⋅ p(s′, a)
⎞
⎠
+
⎧⎪⎪⎨⎪⎪⎩

1 s = s0

0 s ≠ s0

(4)

For instance, for the automaton shown in Figure 1c, the iterative steps are as
follows: c0 = [0,0], c1 = [1,0], c2 = [1, c10 ⋅ 0.8 + c11 ⋅ 0.5] = [1,0.8], c3 = [1, c20 ⋅
0.8 + c21 ⋅ 0.5] = [1,1.2], c4 = [1,1.4], c5 = [1,1.5], c6 = [1,1.55], c7 = [1,1.575],
. . . c = [1,1.6] and H = −(c00.8 log2 0.8 + c10.5 log2 0.5) ≈ 1.05. This method
converges deterministically to the correct value [7].

3.3 Projection-Based Precision & Recall

To compute precision and recall for a log L and a model M (both translated to
SDFAs), our first approach uses the entropy of the projection P and compares
it to the entropy of L and M :

recall(L,M) = H(P(L,M))
H(L)

precision(L,M) = H(P(M,L))
H(M)

(5)

For these measures to work, the entropy of the log and the model cannot be
0. For our example log Le and model Se (Figure 1), recall is 1 and precision is
0.914.

3.4 Potential Gain Precision & Recall

Let X be a stochastic language. By X̂, we denote the set of all possible traces
of X, i.e., X̂ = {t ∈ Σ∗ ∣X(t) > 0}. Let X and Y be two stochastic languages.
By gain(X,Y ), we denote:

gain(X,Y ) =
∑

t∈X̂∩Ŷ
min{−X(t) log2X(t),−Y (t) log2 Y (t)}

H(Y )
(6)

The entropy of a random variable, in our case of a stochastic language, is
a lower bound on the average number of bits required to represent the random
variable [8]. The numerator of gain(X,Y ) is the sum of the contributions of the
traces that are possible according to both X and Y to the minimum description
lengths of the corresponding languages, where for each trace only the smallest
out of the contributions for the two languages is considered in the summation.
Thus, intuitively, gain(X,Y ) is a measure of how compact the average descrip-
tion of a trace that is possible according to both X and Y can be when both
languages are used for the encoding compared to the average description of a
trace in Y using Y , that is, an estimate of the gain in compression of a trace
common to X and Y when both languages are available instead of Y only.
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SPN M M ′ M ′′

compute entropy
and measures

(5)

log L L′ L′′

to SDFA (1) remove p(s, a) = 0 (2) add λ edges

to SDFA (1) remove p(s, a) = 0 (2) add λ edges

Figure 3: Overview of the steps taken to increase the applicability of our meas-
ures.

Let M and L be a model and log, respectively. Then, we define the gain-
based precision and recall between M and L as follows:

gain recall(L,M) = gain(M,L) gain precision(L,M) = gain(L,M) (7)

As L̂ is finite, L̂∩M̂ is also finite, and, thus, the numerator of gain(L,M) (or
the numerator of gain(M,L)) can be computed in the finite loop that iterates
over all the possible traces of L that are also possible traces of M . Besides, as
H(L) and H(M) can always be computed, refer to Section 3.2, the gain-based
precision and recall can always be computed using a deterministic procedure.

Similar to the work on entropic relevance [28, 2], one can incorporate the
selector coding costs in the numerator of gain(X,Y ) to account for the sequence
of decisions of selecting a stochastic language, either X or Y , that results in a
more compact encoding of the trace. The inclusion of the selector coding costs
would result in the use of a lossless encoding of the traces in the numerator
of gain(X,Y ). As such selector coding costs encode binary decisions, they
are small, at most one bit per trace. Consequently, as the ability to decode
the traces from the codes used to compute gain(X,Y ) is not essential for the
definition of the conformance measures but complicates their computation, we
postpone the analysis of the impact of the selector coding costs on the precision
and recall measures to future studies. For future work, we also postpone the
study of generalising the precision and recall measures captured in Eq. 7 for two
input models. Although definitions of such measures are straightforward, their
computation is related to some non-trivial challenges that deserve dedicated
discussions.

For our example log Le and model Se in Figure 1, gain-based recall and
precision are 0.74 and 0.78, respectively. Notice that these values differ from
the projection-based recall and precision computed earlier. In Section 4, we
study the differences between the two sets in more detail.

3.5 Practical Considerations

Next, we discuss some practical considerations that accompany our new meas-
ures, and additional steps to increase their applicability, using the overview
shown in Figure 3.

Step (1): Eq. (2) requires that every edge in the two input SDFAs has a
non-zero probability, as log 0 is undefined (i.e. if δ(s, a) = b then p(s, a) > 0).
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This is easily ensured using a pre-processing step on the SDFAs, which filters
out these edges, and obviously this step does not influence stochastic behaviour.

Step (2): Model and log cannot have zero entropies, i.e. they must con-
tain more than one trace with non-zero probability (be determininstic). In our
implementation, we pre-process each SDFA before projecting and measuring
entropy: from each terminating state s, we add one step out of s with a small
probability λ towards a fresh state. This transition has a fresh label, and this
label is reused for the pre-processing of both SDFAs. For the gain measures, we
compute the added entropy of this step directly:

gain(X,Y ) =

∑
t∈X̂∩Ŷ

⎛
⎜⎜⎜⎜⎜
⎝

min( − (X(t)(1 − λ)) log2(X(t)(1 − λ)),
− (Y (t)(1 − λ)) log2(Y (t)(1 − λ))) +

min( − (X(t)λ) log2 (X(t)λ),
− (Y (t)λ) log2 (Y (t)λ))

⎞
⎟⎟⎟⎟⎟
⎠

H(Y )
(8)

This influences entropy in both SDFAs, but only by 0 ∼ 0.15 entropy.
In [7], it is shown that Equation (4) converges for SDFAs as long as from

each state it is possible to eventually terminate. This corresponds with our
definition of stochastic languages (Definition 1), which requires that the sum of
probabilities over all traces should be 1. In case an SDFA has a livelock which
can be reached with non-zero probability, the probabilities of its traces do not
sum to 1 and hence such an SDFA has no stochastic language. This is inherently
satisfied by event logs, and ensured with a check in our implementation of the
translation of SPNs to SDFAs.

Empty event logs or stochastic process models that do not support any
traces do not describe stochastic languages and are hence not supported by our
technique. This is a common restriction in process mining: sound workflow
nets and process trees have the same limitation and cannot express the empty
language either.

4 Properties of Stochastic Precision and Recall

In the field of conformance checking, many different measures have been pro-
posed, each based on a conceptual idea. For instance, precision is typically
conceptualised as indicating the proportion of behaviour of the model that was
observed in an event log. Different measures might operationalise these concepts
differently, and recently, a discussion has emerged in the field in which precision,
fitness, recall and generalisation have been defined, and properties for measures
targeting these concepts have been proposed [38, 41, 30, 27]. A measure that
is not known to satisfy any property can be considered to return “magic” num-
bers. These properties provide general guidance, but are not sufficient – and
not intended – to establish comparability within or between measures. That
is, even measures satisfying all properties might disagree when applied to the
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same models and logs, or provide counterintuitive results. In fact, the proposed
properties in [38, 41, 30, 27] do not contain strict inequalities at all, thus could
be satisfied by trivial non-informative measures.

In this section, we first adapt some existing properties to the realm of
stochastic-aware measures and introduce new stochastic-specific propertiesin-
cluding properties having strict inequalities. Second, we establish whether sev-
eral existing and our new measures satisfy these properties.

Properties establish a conceptual baseline for (stochastic) conformance check-
ing measures, however do not provide guidance on the practical interpretation
of differences in measures (e.g. “how much is 0.1 extra recall?” or “is 0.6 gain-
recall higher than 0.6 projection-recall?”). Further research on comparability
inter- and intra-measure remains necessary.

4.1 Properties

For readability, the properties have been divided into 5 categories: basic, stochastic-
specific, language equality, inequalities and strict inequalities properties.

4.1.1 Basic Properties

A measure should be deterministic: it should always result in the same value
for an input log and model:

P1 A stochastic-aware conformance measure should be deterministic;

Property P1 is mentioned in [38, Axiom A1], [41, DetPro+].
⊳ A measure should only depend on the languages of the given log and model
rather than on their particular representation and structural differences in SD-
FAs or Stochastic Petri nets used to encode the languages:

P2 A stochastic-aware conformance measure should depend on the stochastic
languages of logs and models and not on their representations;

Property P2 implicitly follows from [38, Axiom A1] and is explicitly men-
tioned in [38, Axiom A4], [41, BehPro+].

In line with all the existing conformance measures, we argue that the values
of stochastic-aware conformance measures should fall into the [0,1] interval.
Having fixed bounds for all event logs and models allows for easier comparisons
between different log and model combinations.

P3 A stochastic-aware conformance measure should return values greater than
or equal to 0 and less than or equal to 1;

Property P3 is implicit in [41], i.e. can be trivially deduced from the claimed
properties, and is mentioned as customary in [38]. This property could be gen-
eralised to a measure merely having a lower and an upper bound [30], however
for simplicity, without loss of generality, we assume these to be 0 and 1 here.
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Similar to the precision and recall measures in information retrieval, we argue
that stochastic-aware precision should be equal to recall with the arguments
flipped:

P4 Given two stochastic languages A and B and stochastic-aware precision
(precision) and recall (recall) measures, it should hold that precision(A,B) =
recall(B,A).

As [38] considers only precision, no corresponding axiom is included, while [41]
considers precision and recall in isolation.

4.1.2 Stochastic-Specific Properties

Inherent to the idea of stochastic conformance checking, a measure should take
the stochastic perspective of both log and model into account. That is, each
measure should take both the stochastic perspectives of both log and model
into account. For instance, [⟨a⟩0.99, ⟨b⟩0.01] and [⟨a⟩0.1, ⟨b⟩0.99] should not have
a recall or precision of 1.

P5 A stochastic-aware conformance measure should take the stochastic per-
spective of both log and model into account. For instance, let L1 and
L2 be stochastic languages that only differ in their stochastic perspective
(∀tL1(t) > 0⇔ L2(t) > 0 and ∃tL1(t) ≠ L2(t)). Then, precision(L1, L2)
is not 1 and recall(L1, L2) is not 1.

Obviously, property P5 has no equivalent in [38, 41, 30, 27].
Finally, it has been generally accepted that ideally, conformance measures

should take the differences within traces into account. That is, traces with small
differences should have a smaller impact on the conformance measure than traces
with large differences. For instance, comparing L1 = [⟨a, b, c, d, e, f, g, h⟩] with
L2 = [⟨a, b, c, d, e, f, g, z⟩] and L3 = [⟨a⟩] and L4 = [⟨z⟩], intuitively L1 and L2

are closer than L3 and L4, even though these pairs of logs have no mutual traces.

P6 A stochastic-aware conformance measure should take differences within
traces into account. For instance, let L1 . . . L4 be equivalent stochastic
language, except for four traces t1 . . . t4 such that ∀i(ti ∈ Li∧∀j ≠ iti ∉ Lj),
such that L1(t1) = L2(t2) = L3(t3) = L4(t4). Let δ be a trace dis-
tance function, such that δ(t1, t2) < δ(t3, t4). Then, precision(L1, L2) <
precision(L3, L4) and recall(L1, L2) < recall(L3, L4).

We acknowledge that the intuitive property implies the formalisation, but
not the other way around, and we leave a “full” formalisation for future work.
Surprisingly, despite the apparent agreement in the community on this idea,
only [27] mentions a similar property.
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4.1.3 Language-Equality Properties

A conformance value of 1 signifies a perfect conformance, which for the stochastic-
aware measures is instantiated as follows:

P7 If an event log and a model express the same stochastic language, then
they should have a stochastic-aware precision of 1;

P8 If precision is 1, then an event log and a model should express the same
stochastic language;

P9 If an event log and a model express the same stochastic language, then
they should have a stochastic-aware recall of 1;

P10 If recall is 1, then an event log and a model should express the same
stochastic language;

No equivalent for non-stochastic conformance measures for these proper-
ties can be derived from [38], while [41, RecPro5+] correspond to P9 and [41,
PrecPro5+, PrecPro60] correspond to P9.

4.1.4 Inequality Properties

In general, different probabilities of traces from an event log and those described
by a model should result in non-perfect conformance values. The larger the
differences, the smaller the returned conformance values should be:

P11 If for all traces of a model M the difference in probability between M and
a log L1 is lower than for another log L2, then the precision of L1 should
be higher than of L2:
If ∀t∈Σ∗M(t) > 0⇒ ∣L1(t)−M(t)∣ ≤ ∣L2(t)−M(t)∣ then precision(L1,M) ≥
precision(L2,M);

P12 If for all traces of a log L the difference in probability between L and
a model M1 is lower than for another model M2, then the recall of M1

should be higher than of M2:
If ∀t∈Σ∗L(t) > 0 ⇒ ∣M1(t) − L(t)∣ ≤ ∣M2(t) − L(t)∣ then recall(L,M1) ≥
recall(L,M2);

These properties have resemblances to [41, PrecPro1-4], [38, Axiom A2]
and [38, Axiom A5].

4.1.5 Strict Inequality Properties

These properties can be strenghtened to strict inequalities by requiring that at
least one trace of M is in L1 and not in L2 (symmetric for recall):
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Table 1: Overview of properties of new and existing stochastic conformance
measures.

EMSC [19] ER [28, 2] entropy recall &
precision (Eq. 5)

gain entropy recall
& precision (Eq. 7)

P1 yes (without un-
folding)

yes yes yes

P2 yes yes yes yes
P3 yes no∗ yes yes
P4 n/a n/a yes yes

P5 yes yes no yes
P6 yes (without un-

folding)
no prefix only no

P7 yes yes∗ yes yes
P8 yes (without un-

folding)
yes∗ no yes

P9 yes yes∗ yes yes
P10 yes (without un-

folding)
yes∗ no yes

P11 no n/a yes no
P12 no no∗ yes no

P13 no n/a yes no
P14 no no∗ yes no

∗ refer to the discussion in Section 4.2.2 for details.

P13 If for all traces of a model M the difference in probability between M and
a log L1 is lower than for another log L2 and there is a trace of M in L1

and not in L2, then the precision of L1 should be strictly higher than of
L2:
If ∀t∈Σ∗M(t) > 0 ⇒ ∣L1(t) −M(t)∣ ≤ ∣L2(t) −M(t)∣ and ∃t∈Σ∗M(t) >
0 ∧L1(t) > 0 ∧L2(t) = 0 then precision(L1,M) > precision(L2,M);

P14 If for all traces of a log L the difference in probability between L and a
model M1 is lower than for another model M2 and there is a trace of L in
M1 and not in M2, then the recall of M1 should be strictly higher than of
M2:
If ∀t∈Σ∗L(t) > 0 ⇒ ∣M1(t) − L(t)∣ ≤ ∣M2(t) − L(t)∣ and ∃t∈Σ∗L(t) > 0 ∧
M1(t) > 0 ∧M2(t) = 0, then recall(L,M1) > recall(L,M2);

There is no equivalent of these properties in [38, 41], as none of the relev-
ant axioms/propositions involves a strict inequality. In [30] however, similar
properties are introduced.

4.2 Analysis of Stochastic Conformance Measures

In this section, we show which of our measures possess which of these properties.
Furthermore, we also consider EMSC. Table 1 shows an overview, and next we
discuss these for EMSC, entropic relevance and our new measures.
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Table 2: A counterexample that P11 does not hold for EMSC: EMSC(L1,M) ≈
0.5 and EMSC(L2,M) ≈ 0.8.

Languages M L1 L2

⟨a⟩ 0.5 0.6 0.7
⟨a, a, . . .⟩ 0.5 0 0
⟨a, a, . . . b⟩ 0 0 0.3
⟨c⟩ 0 0.4 0

Distance ⟨a, a, . . .⟩ ⟨a, a, . . . b⟩ ⟨c⟩
⟨a⟩ ∼1 ∼1 1
⟨a, a, . . .⟩ 0 ∼0 1
⟨a, a, . . . b⟩ ∼0 0 1

Reall. M → L1 ⟨a⟩ ⟨c⟩
⟨a⟩ 0.5 0
⟨a, a, . . .⟩ 0.1 0.4

Reall. M → L2 ⟨a⟩ ⟨a, a, . . . b⟩
⟨a⟩ 0.5 0
⟨a, a, . . .⟩ 0.2 0.3

4.2.1 Properties of Earth Movers’ Stochastic Conformance

The Earth Movers’ Stochastic Conformance [19] (EMSC) measure combines re-
call and precision into one measure, thus P4 does not apply. All of these types
of comparisons are theoretically defined, however for practical applications, for
the latter two types, EMSC applies a pre-processing step in which the stochastic
language of the model is unfolded, thus truncating loops and concurrent beha-
viour. This unfolding step is conceptually not deterministic (P1).

EMSC, by construction, considers only stochastic languages (P2), results in
a number between 0 and 1 (P3), takes the stochastic perspective of both log and
model into account (P5), and by use of the Levenshtein trace distance, considers
partially matching traces (P6). In [19, Lemma 1], it was shown that P7, P8,
P9 and P10 hold for the log-log and the theoretical un-truncated, version of
EMSC.

A counterexample for P11 is shown in Table 2. In this counterexample, the
probability mass targeted by the assumptions of P11 is not large enough to
counteract the influence of the probability mass not targeted, which we exploit
by introducing a trace that is very close to a trace in M but not equivalent. By
symmetry, P12 does not hold, and by similar reasoning, P13 and P14 also do
not hold for EMSC. This also illustrates that it might be challenging to define
stochastic conformance measures that satisfy both P11, P12, P13 and P14 as
well as P6.

4.2.2 Properties of Entropic Relevance

By definition, the entropic relevance measure is deterministic (P1), subject to
floating-point arithmetic error, and the measured values are determined by the
stochastic languages of the compared log and model (P2). Properties P3 and
P7–P10 are not directly applicable to entropic relevance. First, it is neither
intended nor possible to normalise the measure to fit the “0 to 1” interval (P3);
note that entropic relevance measurements have meaningful units, bits required
to describe a trace from the log using the model. Second, entropic relevance
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reflects the compromise between precision and recall in a single measurement [2].
However, the minimal possible entropic relevance relmin for a given log is the
relevance computed for the log and a model that expresses the same stochastic
language as the log (P7 and P9); relmin can be computed using the log as the
model. Moreover, the entropic relevance measure can be configured to ensure
that the measurement of relmin guarantees that the log and the model express
the same stochastic language by using the background costing model that assigns
high costs to traces not supported by the model (P8 and P10).

The entropic relevance measure implements a compromise between precision
and recall, and, thus, P4 does not apply. Furthermore, computing the meas-
urements takes the stochastic perspectives of both the log and the model into
account (P5). Finally, entropic relevance is grounded in the exact matching of
traces in the compared stochastic languages, and, hence, P6 is not fulfilled.

As entropic relevance is designed for comparing candidate models for being
a better representation of a given log and not for comparing candidate logs for
being a better instantiation of the model, P11 and P13 do not apply. Properties
P12 and P14 do not hold in the general case. The entropic relevance supports
a nuanced analysis of the trace probabilities. For instance, to avoid model
overfitting, it can penalize a model that describes an infrequent log trace more
than it would “punish” a model that describes a frequent log trace with a
probability that deviates from its probability in the log.

To conclude, we emphasize that entropic relevance was designed to support
the use case of choosing a candidate model that represents the log traces better
than some other candidate model. It was not intended as a measure of precision
or recall and is, in fact, a blend of the two [2]. Thus, the analysis in this section
is provided for informational, rather than comparison, purpose.

4.2.3 Properties of Entropy Recall and Precision

Properties P1 and P2 hold for our conformance-aware precision and recall meas-
ures, as both the projection and the entropy are computed using deterministic
procedures with only stochastic languages as inputs.

Our precision and recall measures satisfy P3:

Theorem 1. For any log L and model M (given as SDFAs), it holds that
0 ≤ recall(L,M) ≤ 1 and 0 ≤ precision(L,M) ≤ 1.

Proof. (Sketch) precision(L,M) =H(P )/H(M), where P is the projection of L
andM that preserves the probabilities of the model. Note that for any stochastic
language X, it holds that H(X) ≥ 0. Hence, it holds that precision(L,M) ≥ 0.
Next, we show that H(P ) ≤H(M). Let P be obtained from M by keeping the
structure, that is, the states S, the transition function δ, and the start state s0, of
M unchanged and augmenting the probability function ofM (possibly by setting
some values of the probability function to 0); note that this does not always hold
true, however, other situations can be trivially reduced to this case by unfolding
the structure of M and preserving the original probabilities for the unfolded
transitions. Let s ∈ S be a state. Let Us be the set of all subtraces that can be
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used to reach s from s0 in P and let Vs be the set of all subtraces that can be used
to reach a termination from s in P . Similarly, let Xs be the set of all subtraces
that can be used to reach s from s0 inM and let Ys be the set of all subtraces that
can be used to reach a termination from s in M . It holds that Us ⊆Xs and there
exists Zs ⊆ Vs such that Us○Zs are the traces of M , where ○ is the concatenation
operation. By construction of P , it holds that p(t ∈ P ) = p(t ∈M), t ∈ Us ○ Zs.
Note that the traces in Xs ∖ Us are the traces of M but not the traces of P .
Next, we observe that P [s] = H(Us ○ Zs, P ) +H(Us ○ (Vs ∖ Zs), P ) is less than
or equal to M[s] =H(Us ○Zs,M)+H((Xs∖Us)○Ys,M)+H(Us ○(Ys∖Zs),M),
with H(A,B) = −∑t∈A p(t ∈ B) log2 p(t ∈ B), where A is a set of traces and B
is a stochastic language. Indeed, it holds that H(Us ○ Zs, P ) = H(Us ○ Zs,M).
Moreover, it holds that H((Xs ∖Us) ○ Ys,M) ≥ 0. Finally, it holds that H(Us ○
(Vs ∖Zs), P ) ≤H(Us ○ (Ys ∖Zs),M) because, by construction of P , there exists
a bijection β from Us ○ (Vs ∖ Zs) to a partition of Us ○ (Ys ∖ Zs) such that
for each t ∈ Us ○ (Vs ∖ Zs) it holds that t is a prefix of every trace in β(t)
and p(t ∈ P ) = ∑x∈β(t) p(x ∈ M). Finally, we observe that P [s0] = H(P )
and M[s0] = H(M). Thus, it holds that H(P ) ≤ H(M) and, consequently,
H(P )/H(M) ≤ 1. Because, by definition, recall(L,M) = precision(M,L), it
holds that 0 ≤ recall(L,M) ≤ 1.

Properties P7 and P9 hold for our precision and recall measures, because
if the log and model express the same stochastic language, then the projection
will have this same stochastic language as well. Then, the entropy of all three
stochastic languages is obviously equal, hence the numerator and denominator
in (5) are equal. However, their reverse (P8 and P10) do not hold: the logs
[⟨a⟩0.99, ⟨b⟩0.01] and [⟨a⟩0.1, ⟨b⟩0.99] have a recall and precision of 1 but do not
have the same stochastic language. This is also a counterexample for P5.

Properties P11 and P12 hold for our measures: for recall (resp. precision),
the projection P (L,M1) is a super-graph of the projection P (L,M2), and as
for recall (resp. precision) all the probabilities are derived from L (resp M), the
probabilities on the edges common to these SDFAs are equivalent. Then, the
properties follow using reasoning similar to P3. The properties P13 and P14
then hold by extension.

Property P4 holds for our measures by definition.
Property P6, that is, that the measures should be forgiving for partial trace

matching, holds for our measures, however only equal prefixes are considered:
two traces of ⟨a, b, c, d, e, f, g⟩ and ⟨a, b, c, d, e, f, z⟩ are considered equal up to
their last event (g vs z), and the conjunctive automaton is constructed up to
this point. In contrast, the traces ⟨a, b, c, d, e, f, g⟩ and ⟨z, b, c, d, e, f, g⟩ would
be considered completely different by our measures.

Please note that the inclusion of λ edges as described in Section 3.5 has no
influence on these arguments, if λ is chosen sufficiently small.
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4.2.4 Properties of Gain Entropy Recall and Precision

Properties P1 and P2 hold for gain measures, as both the projection and the
entropy are computed using deterministic procedures with only stochastic lan-
guages as inputs. By construction of Equation 6, both measures are between
0 and 1 (P3), symmetric (P4), and take the stochastic perspective of both log
and model into account (P5).

Properties P7 and P9 hold for our gain measures, because if the log and
model express the same stochastic language, then the nominator of Equation 6
will by construction have the same entropy as both log and model. Similarly,
their reverse (P8 and P10) holds by construction.

Property P11 does not hold for the gain measures: the denominator of Eq. 6
does not change as M does not change, and as the nominator takes the minimum
entropy between the log and model, there is no guarantee that if the difference
between log and model is lowered for a particular trace, the minimum entropy
also (non-strictly) decreases. For instance, consider a trace t such that M(t) =
0.5, L1(t) = 0.6 and L2(t) = 0.3. Then, min(M(t) log2M(t), L1(t) log2L1(t)) ≈
0.44 while min(M(t) log2M(t), L2(t) log2L2(t)) = 0.5. Consequently, Proper-
ties P12, P13 and P14 do not hold either.

The gain measures do not consider partial trace equivalences (P6), due to
the nominator of Equation 6.

Please note that the inclusion of λ edges as described in Section 3.5 has no
influence on these arguments, if λ is chosen sufficiently small.

5 Evaluation

In this section, we evaluate the measures introduced in this paper. First, we
investigate whether the measures are true reflections of differences in stochastic
languages. Second, we show that the measures are feasible to compute on real-
life event logs and stochastic models. Third, we illustrate the practical relevance
of our measures on a repository of real-life industrial stochastic process models.

5.1 Implementation

The proposed measures have been implemented as a plug-in of the ProM frame-
work [43]: “Compute relative entropy of a log and a stochastic Petri net.” The
measures themselves are deterministic. However, due to the order in which
transitions are read from a Petri net and double-precision arithmetic, small
differences might occur between runs.

5.2 Real Reflections of Differences: Ranking of Synthetic
Models

Consider an event log L containing 6 distinct traces: [⟨a, b, c⟩10, ⟨a, c, b⟩15,
⟨a, d⟩30, ⟨a, d, e, d⟩20, ⟨a, d, e, d, e, d⟩15, ⟨a, d, e, d, e, d, e, d⟩10]. In this example,
we consider four different stochastic process models (SPNs, see Figure 4) that a
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Figure 4: Four Stochastic Petri nets that could represent our event log L.

user might consider to represent this event log and use to gain insights about the
process that generated the event log. Model S1 was discovered by a stochastic
process discovery technique [33] from L. Model S2 is a manually created SPN
that is similar to S1 but has different probabilities. That is, the stochastic
perspective differs. Model S3 enumerates L’s traces having corresponding prob-
abilities: a stochastic trace model. Model S4 represents all behaviour and is
a flower model, with probabilities derived from L based on the frequencies of
the activities. Table 3 shows (fragments of) the stochastic languages of these
models.

We applied the measures presented in this paper (entropy recall and gain
entropy recall), the Earth Movers’ (EMSC) [18] measure, entropic relevance
(ER) [28], as well as the non-stochastic alignment-based (A) [24] and projected
(P) [15] precision measures. The results are shown in Table 4 (recall, where
relevant, is 1 for all models).

Intuitively, the trace model S3 perfectly represents the event log, thus should
have a perfect stochastic conformance. Entropy, gain and EMSC express this.
ER also ranks S3 highest. Note that ER does not have a notion of a “perfect”
conformance; the lower the relevance value the better. A and P do not consider
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Table 3: Stochastic languages of L and the SPNs in Figure 4 (p is probability).

trace p in L p in S1 p in S2 p in S3 p in S4

⟨a, b, c⟩ 0.1 0.1 0.32 0.1 0.000199
⟨a, c, b⟩ 0.15 0.15 0.48 0.15 0.000199
⟨a, d⟩ 0.3 0.36 0.04 0.3 0.016008
⟨a, d, e, d⟩ 0.2 0.19 0.03 0.2 0.000557
⟨a, d, e, d, e, d⟩ 0.15 0.1 0.03 0.15 0.000019
⟨a, d, e, d, e, d, e, d⟩ 0.1 0.05 0.02 0.1 0.000001
other traces 0 0.05 0.08 0 0.983017

the stochastis perspective, thus also express S3 to have a perfect conformance.
The flower model S4 intuitively should have the lowest precision, as it can
generate any trace of the alphabet with nonzero precision. All measures agree
on S4 having the lowest conformance, where entropy and gain approach their
theoretical limit of 0, which indicates that the stochastic state spaces are almost
completely different; EMSC indicates that a bit over half of the probability mass
needs to be moved to align the stochastic languages of L and S4

2; ER ranks
the stochastic perspective of model S4 to be much different from the stochastic
perspective of the log as the value is much greater than for the other three
models. For S1 and S2, intuitively the probabilities that S1 attaches to the traces
in L are closer to those in L than the probabilities that S2 attaches to these
traces. Thus, we argue that S1 represents L better than S2, which all stochastic
conformance checking measures confirm (entropy, gain, EMSC and ER). For
EMSC, there are large differences between S1 and S2, which seems to indicate
that the control flow cannot play a large role for this measure. In contrast, for
entropy S1 and S2 are close, which here would be our preference, but highlights
the need for future studies into the small differences of (stochastic) conformance
checking techniques beyond properties. ER gives a small preference to model
S1 over S2. Measures A and P do not see any difference between models S1 and
S2, which highlights their non-stochastic nature. Finally, it is remarkable that
EMSC’s values for S2 and S4 are closer, which may be due to EMSC having to
unfold the loop in the flower model, which is bounded and brings the compared
language falsely closer to L.

This experiment illustrates that conformance techniques that are not stochastic-
aware cannot fully grasp the differences between the stochastic perspective in
these process models.

5.3 Practical Feasibility

Next, we report on the feasibility of the proposed stochastic-aware conform-
ance measures. To this end,we followed the set-up shown in Figure 5: we used
ten publicly available real-life event logs arbitrarily chosen from the logs pub-

2Please note that EMSC supports loop behaviour by unfolding, thus the measure can get
arbitrarily close to 0 by unfolding loop behaviour more, which makes the actual value a bit
arbitrary.
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Table 4: Stochastic measures compared to regular conformance checking tech-
niques.

rank entropy gain EMSC [18] ER [28] A [24] P [15]

1 S3 (1) S3 (1) S3 (1) S3 (2.471) S3 (1) S3 (1)
2 S1 (0.918) S1 (0.900) S1 (0.908) S1 (2.910)

S1, S2 (0.846) S1, S2 (0.934)
3 S2 (0.834) S2 (0.541) S2 (0.570) S2 (4.473)
4 S4 (0.096) S4 (0.043) S4 (0.509) S4 (12.376) S4 (0.292) S4 (0.551)

10
logs

40
stochastic

models

5 measures 200
outcomes

200 time
measures

200 size
measures

4 stochastic
discovery
techniques

Figure 5: Set-up of our practical feasibility experiment.

lished by the IEEE Task Force on Process Mining3. To these logs, we applied 4
stochastic discovery techniques to obtain stochastic Petri nets: (1) the stochastic
miner by Rogge-Solti et al. (ARS) [33], (2) Frequency Estimator [5] using In-
ductive Miner - infrequent [14] (FEIMf), (3) Right Hand Activity Pair Estim-
ator [5] using Inductive Miner - infrequent [14] (RHEIMf), and (4) a baseline
model including the most-occurring trace of the log with probability 1 (MOT).

We then applied 5 stochastic conformance measures to the 40 pairs of event
logs and discovered models: (1) EMSC [19], (2) ER [28], (3) our new entropy
recall and precision (Equation (5)), (4) our new gain entropy recall and precision
(Equation (7)), and (5) alignment-based fitness and precision [42, 1]4 as a non-
stochastic baseline.

We also measured the time these measures took, and the size of the models
in nodes (places and transitions) and edges. The code used to run the evaluation
is publicly available.5 The machine used to compute the measures had a W-
2195 CPU with 64GB RAM running Ubuntu 20.04, however as all time measures
were only taken once, they can reveal general trends only. The BPIC13 logs were
pre-processed by removing the lifecycle:transition attribute from all events, to
ensure appropriate interpretation by the ER implementation.

Table 5 shows the results. Some results could not be obtained: for BPIC11,
BPIC15-1 and BPIC12, ARS did not return a model as it ran out of memory.
Where a conformance measure did not return a result, an exclamation mark
was annotated. For EMSC, this was due to time: a timeout of a day was

3See https://data.4tu.nl/repository/collection:event_logs_real.
4Please note that this computation also includes generalisation as a side effect
5The source code used in the evaluation is accessible via https://svn.win.tue.nl/repos/

prom/Packages/StochasticAwareConformanceChecking/Trunk (revision 44718).
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Table 5: Precision and recall values and times taken to compute them in ms.
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applied. For the entropy and gain entropy measures, this was mostly due to
models that were not translatable into SDFAs (see Section 3.5). An exception
were the measures for BPIC15-1, where the automaton-generation (shared by
ER, entropy and gain entropy) step timed out. For all other tested logs and
models, ER completed. To improve the entropy-based tools, one can look into
computing the trace probabilities directly using SPNs, rather than using the
derived SDFAs. However, computation of trace probabilities directly on SPNs
is associated with challenges related to the handling of silent transitions [18].

Run time is comparable between entropy and gain entropy measures, while
ER seems less influenced by the size of the log or the complexity of the model.
EMSC is clearly the most complex of the tested stochastic conformance meas-
ures: for MOT it is very fast, while for real models it in general takes consid-
erably longer than the other tested conformance measures. We also included
standard alignments [42, 1] to illustrate runtime compared to this non-stochastic
aware conformance checking technique. For MOT, alignments can be faster
than our new measures, due to our measures constructing the entire state space
of a model, while alignment-based precision constructs only the state space
covered by the log, which for this baseline miner MOT is a single trace. For the
three actual stochastic discovery techniques, compared with entropy and gain
entropy, alignments show mixed computing time behaviour: on smaller models
(BPIC13*, BPIC17-o, Roadfines), our new measures are faster than alignments.
There are some settings in which the entropy and gain entropy measures did not
produce a result but alignments did. This can be due to the model being not
translatable to an SDFA or the state space being too large. Alignment-based
precision only computes the state space that was covered by the log, plus one
more step according to the model [1], thus on large state spaces does not cover
the entire state space of the model. While both alignments and our new meas-
ures contain optimisation steps, we conclude that considering the stochastic
perspective does in most cases not inflict a higher run time, if the model is
supported by our measures.

Log BPIC17-o for ARS provides an example for the benefit of the gain
measures: entropy recall is 1, however as Property P10 does not hold for this
measure, we cannot conclude stochastic language equivalence between the model
by ARS and the log. EMSC gives no clarity either, as the model might have
been unfolded and truncated. Using the gain entropy recall, for which Prop-
erty P9 holds, we can conclude that ARS did not discover a stochastic language-
equivalent model.

For EMSC/ER/recall, all measures seem to agree on the models discovered
by FEIMf and RHEIMf to be similar: the measured differences are minimal,
except for BPIC13-i. This might be due to the control flow perspective of
these miners be equivalent, where the stochastic perspective matters less. For
EMSC/ER/precision, the differences are slightly larger. It would be interesting
to compare the measured values based on intuition, and to develop intuition
accordingly, however we leave this for future work.

One could argue that our measures are strict as both the traces and their
probabilities captured in the log and model should match well for high scores.
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However, one could also argue that the tested discovery technique is, apparently,
unable to discover models that represent the likelihood of traces in the event
logs well, indicating the need for further research in such techniques.

Further analysis showed that for SDFAs with large cycles, Equation (4)
might need a quadratic number of steps (in the size of the state space S) to
converge, and that this is indeed the most expensive step of both sets of our
measures. However, run time was not infeasible in our evaluation: at most two
hours for the largest logs of most complex procesess we tested, but generally
much less. Nevertheless, as future work, this step might be optimised using the
SDFA’s structure.

Please note that this experiment did not attempt to study the values of the
measures, though it is clear that entropy and gain entropy might give consid-
erably different results for the same inputs. As our discussion on properties for
these measures showed (Section 4), both provide different guarantees, and meas-
ure differences in stochastic behaviour differently. We leave a detailed study and
analysis of what these measures penalise for, in terms of control flow and the
stochastic perspective, for future work.

5.4 Practical Usefulness: German Health Insurance Com-
pany

In 2008, we conducted a project with a German health insurance company aimed
to analyse and improve their resource planning practices [29]. The company had
a dedicated department to hand-craft stochastic process models that describe
their critical operational processes. Concretely, the processes were described as
EPCs augmented with decision probabilities and average times for conducting
business activities (modeled as functions in EPCs). The probabilities of making
the various decisions in processes were introduced to model the likelihood of
observing the corresponding business decisions in the real world. The augmen-
ted models were used by the company to plan the workforce in the upcoming
calendar year. Given a forecast of the expected number of cases of a particular
process, the company relied on the estimated decision probabilities and activity
durations to compute how much effort must be invested into the process and,
consequently, resources hired to support that process.

To ensure that no double resource allocation occurs, as this results in a
financial loss to the company, it is important that no two models describe the
same traces. The more similar or identical traces two models describe, the
higher the chance they (partly) address the same business case, such as an
insurance claim handling or an insurance application process. Due to a high
number of models, i.e., approximately 4 000 models were available at the time
of the project, their manual analysis was deemed intractable.6

Armed with the stochastic conformance measures introduced in this article,
to identify models that describe identical (and frequent) traces, we performed

6Unfortunately, the models were not made publicly available, as per the terms of the
agreement with the company.
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Figure 6: Two slightly different SDFAs from a German insurer. (h↔ j).

their pairwise comparison. Models that do not describe a proper stochastic
language were discarded. Furthermore, only models with a single start node and
a single end node were considered in our analysis. This filtering step resulted in
the collection of 3 090 models. The average time of computing projection-based
conformance, either precision or recall, for a pair of models using our tool was
measured to be 69 ms. As a result, we discovered 48 pairs of distinct models
that describe some identical traces. Two anonymised models from the collection
translated to SDFAs, for which both stochastic recall and precision values are
equal to 0.4, are shown in Figure 6. As such models can potentially lead to
double allocation of resources by the company, they should be further analysed
by business analysts. As these models describe identical frequent traces, to
reduce the number of maintained models, the analysts may consider combining
them into a single model.

6 Discussion and Related Work

A dozen of conformance checking measures have been proposed to date. For a
comprehensive overview of the conformance checking field, we refer the reader
to [40, 6, 30]. The vast majority of the existing conformance measures address
nondeterministic models and logs. Nondeterminism, as a concept in computer
science, was introduced in [31] in the context of nondeterministic finite auto-
mata. Nondeterminism, as used in automata theory, states that a choice of the
next step in a computation does not necessarily determine its future. This in-
terpretation differs from the one employed in the context of distributed systems,
which says that there is no preference among the computations of a system. As
such, the latter interpretation provides an abstraction mechanism that allows
treating all the computations of a system as being equally good, or equally likely
to be induced by the system. Similar to nondeterminism, probabilities can be
used to abstract from unimportant or unknown aspects of a system. However,
by associating different probabilities with different computations of a system
one can encode that certain computations are more likely to be induced by the
system than others [44]. In [41], van der Aalst stressed the need to consider
probabilities in conformance checking.

The stochastic perspective has seen recent attention in process discovery
techniques, such as the miner by Rogge-Solti et al. [33], which uses align-
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ments [42] to estimate arbitrary delay distributions of stochastic Petri nets
thereby implying a stochastic perspective; and six techniques that take an ex-
isting control flow model and estimate probabilities for the transitions to derive
an SPN [5]. Further similar approaches include declarative constraints with
bounds on the fraction of cases that must satisfy or violate constraints [22, 21]
and Bayesian model fitting [12].

Some conformance checking techniques use stochastic elements, however
without targeting stochastic models. For instance, Hidden Markov Models
(HMMs) have been used to model business processes and to check conform-
ance. In [35], recall and precision are computed by translating Petri nets and
event logs to HMMs. However, the stochastic perspective of HMMs is not used,
as all the events in a particular state are treated as being equally likely. Another
limitation is that parallelism is not supported.

In [30], a precision measure and a recall measure were proposed for process
mining founded in the notion of the topological entropy of a regular language.
In [30], a framework for conformance checking approaches is proposed, which
is instantiated using cardinalities and entropy. The measures proposed in this
paper can be seen as extensions of the entropy-based technique for stochastic
languages.

Alignments [42] search for a least-cost path through event log and model,
thereby being robust to slight deviations between traces. As recall takes the
frequency of traces into account, the stochastic perspective of logs is taken into
account. However, alignment-based precision measures [24] do not consider the
stochastic perspective of the model. Alignment-based precision measures might
be extended to support stochastic process models, for instance by searching
for a most-likely path. Projected conformance checking [15] addresses long run
times of conformance checking techniques by projecting behaviour onto sub-
sets of activities of a certain size. The measures presented in this paper can be
extended in a similar fashion. Generalised conformance checking [32] compares
an event log and model based on a given trust level for each, derived, for instance,
from identified data quality issues [37]. In stochastic conformance checking, one
could consider the probability attached to each trace in log and model to be an
indication of trust, yielding an alternative, possibly more fine-grained, view on
their differences.

To the best of our knowledge, the Earth Movers’ Stochastic Conformance
(EMSC) [18, 19] and Entropic Relevance (ER) [28, 2] techniques are the only
stochastic conformance checking techniques proposed today. In EMSC, the log
and model’s stochastic languages are seen as distributions of traces, and the
Wasserstein metric is applied. While intuitive, it does not support infinite lan-
guages (that is, models with loops), while our measures support such languages.
In ER, the log and model are compared to obtain the average number of bits
required to compress a trace from the log using the model. The better the model
represents the log traces and their relative likelihoods, the better compression
can be achieved. In Section 4, we analysed EMSC and ER in detail.

The stochastic perspective has enabled several new types of analyses, such
as computing the trace attributes that have the largest impact on the followed
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stochastic process [17], finding stochastic-based changes in processes (process
drift) [3] and anomaly detection without using process models [26, 25].

Furthermore, our work contributes to the ongoing discussion on ideal con-
formance checking measures by proposing properties that these measures should
have [38, 41, 30, 27].

Finally, to compare SDFAs, the Kullback-Leibler (KL) divergence [7] could
be used. However, KL-divergence does not exist if one SDFA supports a trace
that the other SDFA does not support, making it unsuitable for conformance
checking purposes.

7 Conclusion

In process mining, the stochastic perspective of event logs and process models
is essential to inform process optimisation efforts and techniques, such as simu-
lation, prediction, recommendation, and to inform staffing decisions: without a
stochastic perspective, efforts spent on optimisation are at risk of being spent
on rare, exceptional behavior and lead to misinformed decisions.

In this paper, we contributed to making the stochastic perspective a first-
class citizen of process mining techniques, by introducing two sets of stochastic-
aware conformance checking techniques with two measures each: fitness and
precision. The proposed sets of precision and recall measures are applicable to
an arbitrary event log and a model that describes a finite or infinite number of
traces using a finite number of reachable states. Fourteen desirable properties
of stochastic conformance checking measures were identified and the adherence
of our measures to these properties was analysed.

An evaluation based on our publicly available implementation confirmed the
feasibility of using the measures in real-life industrial settings. We acknowledge
that our measures have limitations, which give rise to future work: Various
notions of correctness for process models, like boundedness or soundness, clas-
sify a process model that can induce an infinite number of states as incorrect.
However, as such models can appear in practice due to modelling errors, it is
relevant to extend the proposes measures to account for infinite-state models.
Our entropy measures address (to some extent) the problem of partial trace
matches [27]: common prefixes of traces are considered and contribute to the
measures, however common postfixes are not. Thus, a model and a log that
have their first activity different will be considered to be completely disjoint.
This limitation can be addressed by considering both the original SDFA and
its edge-reversed version during construction of the projection. Finally, the en-
tropy measures consider the stochastic perspective of either log or model, but
not both. In future work, this could be addressed. The gain entropy measures
are the opposite: they do not consider partial trace matches, but consider the
stochastic perspective of both log and model.

As future work, it might be interesting to characterise the class of stochastic
Petri nets that can be represented by deterministic stochastic languages and,
by extension, SDFAs. Furthermore, we encourage more research on stochastic
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conformance measures that satisfy the properties identified in this paper.
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A Translation

A.1 Translating Event Logs to SDFAs

In the implementation used for this paper, we translate an event log into an
SDFA by incrementally constructing a deterministic finite automaton. For each
trace, we start in the initial state of the SDFA and for each event in the trace,
we follow the existing corresponding transition of the SDFA, or add a new
transition and state if no transition existed yet. Thus, the SDFA will exhibit a
tree structure. While constructing the automaton, for each state, we count the
number of times each transition in the automaton is used in the event log, and
we count the number of times a trace ended. As a last step, we normalise these
counters to obtain the probabilities to obtain an SDFA.

There are no restrictions on event logs, that is, each event log can be trans-
lated into a corresponding SDFA.

A.2 Translating Stochastic Petri Nets to SDFAs

A.2.1 Termination

To establish the language of a stochastic Petri net, it is firstly necessary to define
a notion of termination.

SPNs do not possess an explicit notion of probabilistic termination, that is,
they can only deterministically terminate. However, a final marking M can be
added to any SPN by adding a silent transition with the desired weight/waiting
time properties, such that this transition takes tokens from all places in M , has
inhibitor arcs to all other places, and produces a token in a newly-added place,
causing the SPN to deadlock.

Thus, in this paper, we assume that an SPN can only terminate if no more
transitions are enabled (deadlock).

A.2.2 Translation

Transitions in the SPN might have a label attached, and firing a transition
will execute the activity corresponding to the label. For labelled transitions, we
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assume the standard semantics of SPNs, which straightforwardly lead to SDFAs,
where each state of the SDFA represents a particular marking in the SPN.

For unlabelled transitions, that is, transitions without a label attached, si-
lent transitions, a more involved translation is necessary. That is, from each
reachable marking M , any silent transitions are exhaustively followed, while
keeping track of the chains of silent transitions that lead to either termination
or labelled transitions. These paths then determine the probability of each la-
belled transition or termination, that is, the probabilities of all paths leading
to a certain transition are added. However, as an SDFA must be deterministic,
only the shortest path is considered for marking purposes.

Transition labels are not necessarily unique, that is, several transitions might
have the same label. The translation described is possible if at any reachable
state of the SPN, there do not exist two non-equal fireable chains of unlabelled
transitions such that at the end of each chain a transition with the same label is
enabled. Furthermore, in some cases, choices between silent transitions might
lead to non-deterministic behaviour.
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